你需要知道的那些go语言json技巧

目录
  1. 1. 基本的序列化
  2. 2. 结构体tag介绍
  3. 3. 使用json tag指定字段名
  4. 4. 忽略某个字段
  5. 5. 忽略空值字段
  6. 6. 忽略嵌套结构体空值字段
  7. 7. 不修改原结构体忽略空值字段
  8. 8. 优雅处理字符串格式的数字
  9. 9. 整数变浮点数
  10. 10. 自定义解析时间字段
  11. 11. 自定义MarshalJSON和UnmarshalJSON方法
  12. 12. 使用匿名结构体添加字段
  13. 13. 使用匿名结构体组合多个结构体
  14. 14. 处理不确定层级的json

本文总结了我平时在项目中遇到的那些关于go语言JSON数据与结构体之间相互转换的问题及解决办法。

基本的序列化

首先我们来看一下Go语言中json.Marshal()(序列化)与json.Unmarshal(反序列化)的基本用法。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
type Person struct {
Name string
Age int64
Weight float64
}

func main() {
p1 := Person{
Name: "七米",
Age: 18,
Weight: 71.5,
}
// struct -> json string
b, err := json.Marshal(p1)
if err != nil {
fmt.Printf("json.Marshal failed, err:%v\n", err)
return
}
fmt.Printf("str:%s\n", b)
// json string -> struct
var p2 Person
err = json.Unmarshal(b, &p2)
if err != nil {
fmt.Printf("json.Unmarshal failed, err:%v\n", err)
return
}
fmt.Printf("p2:%#v\n", p2)
}

输出:

1
2
str:{"Name":"七米","Age":18,"Weight":71.5}
p2:main.Person{Name:"七米", Age:18, Weight:71.5}

结构体tag介绍

Tag是结构体的元信息,可以在运行的时候通过反射的机制读取出来。 Tag在结构体字段的后方定义,由一对反引号包裹起来,具体的格式如下:

1
`key1:"value1" key2:"value2"`

结构体tag由一个或多个键值对组成。键与值使用冒号分隔,值用双引号括起来。同一个结构体字段可以设置多个键值对tag,不同的键值对之间使用空格分隔。

使用json tag指定字段名

序列化与反序列化默认情况下使用结构体的字段名,我们可以通过给结构体字段添加tag来指定json序列化生成的字段名。

1
2
3
4
5
6
// 使用json tag指定序列化与反序列化时的行为
type Person struct {
Name string `json:"name"` // 指定json序列化/反序列化时使用小写name
Age int64
Weight float64
}

忽略某个字段

如果你想在json序列化/反序列化的时候忽略掉结构体中的某个字段,可以按如下方式在tag中添加-

1
2
3
4
5
6
// 使用json tag指定json序列化与反序列化时的行为
type Person struct {
Name string `json:"name"` // 指定json序列化/反序列化时使用小写name
Age int64
Weight float64 `json:"-"` // 指定json序列化/反序列化时忽略此字段
}

忽略空值字段

当 struct 中的字段没有值时, json.Marshal() 序列化的时候不会忽略这些字段,而是默认输出字段的类型零值(例如int和float类型零值是 0,string类型零值是"",对象类型零值是 nil)。如果想要在序列序列化时忽略这些没有值的字段时,可以在对应字段添加omitempty tag。

举个例子:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
type User struct {
Name string `json:"name"`
Email string `json:"email"`
Hobby []string `json:"hobby"`
}

func omitemptyDemo() {
u1 := User{
Name: "七米",
}
// struct -> json string
b, err := json.Marshal(u1)
if err != nil {
fmt.Printf("json.Marshal failed, err:%v\n", err)
return
}
fmt.Printf("str:%s\n", b)
}

输出结果:

1
str:{"name":"七米","email":"","hobby":null}

如果想要在最终的序列化结果中去掉空值字段,可以像下面这样定义结构体:

1
2
3
4
5
6
7
// 在tag中添加omitempty忽略空值
// 注意这里 hobby,omitempty 合起来是json tag值,中间用英文逗号分隔
type User struct {
Name string `json:"name"`
Email string `json:"email,omitempty"`
Hobby []string `json:"hobby,omitempty"`
}

此时,再执行上述的omitemptyDemo,输出结果如下:

1
str:{"name":"七米"} // 序列化结果中没有email和hobby字段

忽略嵌套结构体空值字段

首先来看几种结构体嵌套的示例:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
type User struct {
Name string `json:"name"`
Email string `json:"email,omitempty"`
Hobby []string `json:"hobby,omitempty"`
Profile
}

type Profile struct {
Website string `json:"site"`
Slogan string `json:"slogan"`
}

func nestedStructDemo() {
u1 := User{
Name: "七米",
Hobby: []string{"足球", "双色球"},
}
b, err := json.Marshal(u1)
if err != nil {
fmt.Printf("json.Marshal failed, err:%v\n", err)
return
}
fmt.Printf("str:%s\n", b)
}

匿名嵌套Profile时序列化后的json串为单层的:

1
str:{"name":"七米","hobby":["足球","双色球"],"site":"","slogan":""}

想要变成嵌套的json串,需要改为具名嵌套或定义字段tag:

1
2
3
4
5
6
7
type User struct {
Name string `json:"name"`
Email string `json:"email,omitempty"`
Hobby []string `json:"hobby,omitempty"`
Profile `json:"profile"`
}
// str:{"name":"七米","hobby":["足球","双色球"],"profile":{"site":"","slogan":""}}

想要在嵌套的结构体为空值时,忽略该字段,仅添加omitempty是不够的:

1
2
3
4
5
6
7
type User struct {
Name string `json:"name"`
Email string `json:"email,omitempty"`
Hobby []string `json:"hobby,omitempty"`
Profile `json:"profile,omitempty"`
}
// str:{"name":"七米","hobby":["足球","双色球"],"profile":{"site":"","slogan":""}}

还需要使用嵌套的结构体指针:

1
2
3
4
5
6
7
type User struct {
Name string `json:"name"`
Email string `json:"email,omitempty"`
Hobby []string `json:"hobby,omitempty"`
*Profile `json:"profile,omitempty"`
}
// str:{"name":"七米","hobby":["足球","双色球"]}

不修改原结构体忽略空值字段

我们需要json序列化User,但是不想把密码也序列化,又不想修改User结构体,这个时候我们就可以使用创建另外一个结构体PublicUser匿名嵌套原User,同时指定Password字段为匿名结构体指针类型,并添加omitemptytag,示例代码如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
type User struct {
Name string `json:"name"`
Password string `json:"password"`
}

type PublicUser struct {
*User // 匿名嵌套
Password *struct{} `json:"password,omitempty"`
}

func omitPasswordDemo() {
u1 := User{
Name: "七米",
Password: "123456",
}
b, err := json.Marshal(PublicUser{User: &u1})
if err != nil {
fmt.Printf("json.Marshal u1 failed, err:%v\n", err)
return
}
fmt.Printf("str:%s\n", b) // str:{"name":"七米"}
}

优雅处理字符串格式的数字

有时候,前端在传递来的json数据中可能会使用字符串类型的数字,这个时候可以在结构体tag中添加string来告诉json包从字符串中解析相应字段的数据:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
type Card struct {
ID int64 `json:"id,string"` // 添加string tag
Score float64 `json:"score,string"` // 添加string tag
}

func intAndStringDemo() {
jsonStr1 := `{"id": "1234567","score": "88.50"}`
var c1 Card
if err := json.Unmarshal([]byte(jsonStr1), &c1); err != nil {
fmt.Printf("json.Unmarsha jsonStr1 failed, err:%v\n", err)
return
}
fmt.Printf("c1:%#v\n", c1) // c1:main.Card{ID:1234567, Score:88.5}
}

整数变浮点数

在 JSON 协议中是没有整型和浮点型之分的,它们统称为number。json字符串中的数字经过Go语言中的json包反序列化之后都会成为float64类型。下面的代码便演示了这个问题:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
func jsonDemo() {
// map[string]interface{} -> json string
var m = make(map[string]interface{}, 1)
m["count"] = 1 // int
b, err := json.Marshal(m)
if err != nil {
fmt.Printf("marshal failed, err:%v\n", err)
}
fmt.Printf("str:%#v\n", string(b))
// json string -> map[string]interface{}
var m2 map[string]interface{}
err = json.Unmarshal(b, &m2)
if err != nil {
fmt.Printf("unmarshal failed, err:%v\n", err)
return
}
fmt.Printf("value:%v\n", m2["count"]) // 1
fmt.Printf("type:%T\n", m2["count"]) // float64
}

这种场景下如果想更合理的处理数字就需要使用decoder去反序列化,示例代码如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
func decoderDemo() {
// map[string]interface{} -> json string
var m = make(map[string]interface{}, 1)
m["count"] = 1 // int
b, err := json.Marshal(m)
if err != nil {
fmt.Printf("marshal failed, err:%v\n", err)
}
fmt.Printf("str:%#v\n", string(b))
// json string -> map[string]interface{}
var m2 map[string]interface{}
// 使用decoder方式反序列化,指定使用number类型
decoder := json.NewDecoder(bytes.NewReader(b))
decoder.UseNumber()
err = decoder.Decode(&m2)
if err != nil {
fmt.Printf("unmarshal failed, err:%v\n", err)
return
}
fmt.Printf("value:%v\n", m2["count"]) // 1
fmt.Printf("type:%T\n", m2["count"]) // json.Number
// 将m2["count"]转为json.Number之后调用Int64()方法获得int64类型的值
count, err := m2["count"].(json.Number).Int64()
if err != nil {
fmt.Printf("parse to int64 failed, err:%v\n", err)
return
}
fmt.Printf("type:%T\n", int(count)) // int
}

json.Number的源码定义如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
// A Number represents a JSON number literal.
type Number string

// String returns the literal text of the number.
func (n Number) String() string { return string(n) }

// Float64 returns the number as a float64.
func (n Number) Float64() (float64, error) {
return strconv.ParseFloat(string(n), 64)
}

// Int64 returns the number as an int64.
func (n Number) Int64() (int64, error) {
return strconv.ParseInt(string(n), 10, 64)
}

我们在处理number类型的json字段时需要先得到json.Number类型,然后根据该字段的实际类型调用Float64()或Int64()。

自定义解析时间字段

Go语言内置的 json 包使用 RFC3339 标准中定义的时间格式,对我们序列化时间字段的时候有很多限制。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
type Post struct {
CreateTime time.Time `json:"create_time"`
}

func timeFieldDemo() {
p1 := Post{CreateTime: time.Now()}
b, err := json.Marshal(p1)
if err != nil {
fmt.Printf("json.Marshal p1 failed, err:%v\n", err)
return
}
fmt.Printf("str:%s\n", b)
jsonStr := `{"create_time":"2020-04-05 12:25:42"}`
var p2 Post
if err := json.Unmarshal([]byte(jsonStr), &p2); err != nil {
fmt.Printf("json.Unmarshal failed, err:%v\n", err)
return
}
fmt.Printf("p2:%#v\n", p2)
}

上面的代码输出结果如下:

1
2
str:{"create_time":"2020-04-05T12:28:06.799214+08:00"}
json.Unmarshal failed, err:parsing time ""2020-04-05 12:25:42"" as ""2006-01-02T15:04:05Z07:00"": cannot parse " 12:25:42"" as "T"

也就是内置的json包不识别我们常用的字符串时间格式,如2020-04-05 12:25:42。

不过我们通过实现 json.Marshaler/json.Unmarshaler 接口实现自定义的事件格式解析。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
type CustomTime struct {
time.Time
}

const ctLayout = "2006-01-02 15:04:05"

var nilTime = (time.Time{}).UnixNano()

func (ct *CustomTime) UnmarshalJSON(b []byte) (err error) {
s := strings.Trim(string(b), "\"")
if s == "null" {
ct.Time = time.Time{}
return
}
ct.Time, err = time.Parse(ctLayout, s)
return
}

func (ct *CustomTime) MarshalJSON() ([]byte, error) {
if ct.Time.UnixNano() == nilTime {
return []byte("null"), nil
}
return []byte(fmt.Sprintf("\"%s\"", ct.Time.Format(ctLayout))), nil
}

func (ct *CustomTime) IsSet() bool {
return ct.UnixNano() != nilTime
}

type Post struct {
CreateTime CustomTime `json:"create_time"`
}

func timeFieldDemo() {
p1 := Post{CreateTime: CustomTime{time.Now()}}
b, err := json.Marshal(p1)
if err != nil {
fmt.Printf("json.Marshal p1 failed, err:%v\n", err)
return
}
fmt.Printf("str:%s\n", b)
jsonStr := `{"create_time":"2020-04-05 12:25:42"}`
var p2 Post
if err := json.Unmarshal([]byte(jsonStr), &p2); err != nil {
fmt.Printf("json.Unmarshal failed, err:%v\n", err)
return
}
fmt.Printf("p2:%#v\n", p2)
}

自定义MarshalJSON和UnmarshalJSON方法

上面那种自定义类型的方法稍显啰嗦了一点,下面来看一种相对便捷的方法。

首先你需要知道的是,如果你能够为某个类型实现了MarshalJSON()([]byte, error)UnmarshalJSON(b []byte) error方法,那么这个类型在序列化(MarshalJSON)/反序列化(UnmarshalJSON)时就会使用你定制的相应方法。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
type Order struct {
ID int `json:"id"`
Title string `json:"title"`
CreatedTime time.Time `json:"created_time"`
}

const layout = "2006-01-02 15:04:05"

// MarshalJSON 为Order类型实现自定义的MarshalJSON方法
func (o *Order) MarshalJSON() ([]byte, error) {
type TempOrder Order // 定义与Order字段一致的新类型
return json.Marshal(struct {
CreatedTime string `json:"created_time"`
*TempOrder // 避免直接嵌套Order进入死循环
}{
CreatedTime: o.CreatedTime.Format(layout),
TempOrder: (*TempOrder)(o),
})
}

// UnmarshalJSON 为Order类型实现自定义的UnmarshalJSON方法
func (o *Order) UnmarshalJSON(data []byte) error {
type TempOrder Order // 定义与Order字段一致的新类型
ot := struct {
CreatedTime string `json:"created_time"`
*TempOrder // 避免直接嵌套Order进入死循环
}{
TempOrder: (*TempOrder)(o),
}
if err := json.Unmarshal(data, &ot); err != nil {
return err
}
var err error
o.CreatedTime, err = time.Parse(layout, ot.CreatedTime)
if err != nil {
return err
}
return nil
}

// 自定义序列化方法
func customMethodDemo() {
o1 := Order{
ID: 123456,
Title: "《七米的Go学习笔记》",
CreatedTime: time.Now(),
}
// 通过自定义的MarshalJSON方法实现struct -> json string
b, err := json.Marshal(&o1)
if err != nil {
fmt.Printf("json.Marshal o1 failed, err:%v\n", err)
return
}
fmt.Printf("str:%s\n", b)
// 通过自定义的UnmarshalJSON方法实现json string -> struct
jsonStr := `{"created_time":"2020-04-05 10:18:20","id":123456,"title":"《七米的Go学习笔记》"}`
var o2 Order
if err := json.Unmarshal([]byte(jsonStr), &o2); err != nil {
fmt.Printf("json.Unmarshal failed, err:%v\n", err)
return
}
fmt.Printf("o2:%#v\n", o2)
}

输出结果:

1
2
str:{"created_time":"2020-04-05 10:32:20","id":123456,"title":"《七米的Go学习笔记》"}
o2:main.Order{ID:123456, Title:"《七米的Go学习笔记》", CreatedTime:time.Time{wall:0x0, ext:63721678700, loc:(*time.Location)(nil)}}

使用匿名结构体添加字段

使用内嵌结构体能够扩展结构体的字段,但有时候我们没有必要单独定义新的结构体,可以使用匿名结构体简化操作:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
type UserInfo struct {
ID int `json:"id"`
Name string `json:"name"`
}

func anonymousStructDemo() {
u1 := UserInfo{
ID: 123456,
Name: "七米",
}
// 使用匿名结构体内嵌User并添加额外字段Token
b, err := json.Marshal(struct {
*UserInfo
Token string `json:"token"`
}{
&u1,
"91je3a4s72d1da96h",
})
if err != nil {
fmt.Printf("json.Marsha failed, err:%v\n", err)
return
}
fmt.Printf("str:%s\n", b)
// str:{"id":123456,"name":"七米","token":"91je3a4s72d1da96h"}
}

使用匿名结构体组合多个结构体

同理,也可以使用匿名结构体来组合多个结构体来序列化与反序列化数据:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
type Comment struct {
Content string
}

type Image struct {
Title string `json:"title"`
URL string `json:"url"`
}

func anonymousStructDemo2() {
c1 := Comment{
Content: "永远不要高估自己",
}
i1 := Image{
Title: "赞赏码",
URL: "https://www.liwenzhou.com/images/zanshang_qr.jpg",
}
// struct -> json string
b, err := json.Marshal(struct {
*Comment
*Image
}{&c1, &i1})
if err != nil {
fmt.Printf("json.Marshal failed, err:%v\n", err)
return
}
fmt.Printf("str:%s\n", b)
// json string -> struct
jsonStr := `{"Content":"永远不要高估自己","title":"赞赏码","url":"https://www.liwenzhou.com/images/zanshang_qr.jpg"}`
var (
c2 Comment
i2 Image
)
if err := json.Unmarshal([]byte(jsonStr), &struct {
*Comment
*Image
}{&c2, &i2}); err != nil {
fmt.Printf("json.Unmarshal failed, err:%v\n", err)
return
}
fmt.Printf("c2:%#v i2:%#v\n", c2, i2)
}

输出:

1
2
str:{"Content":"永远不要高估自己","title":"赞赏码","url":"https://www.liwenzhou.com/images/zanshang_qr.jpg"}
c2:main.Comment{Content:"永远不要高估自己"} i2:main.Image{Title:"赞赏码", URL:"https://www.liwenzhou.com/images/zanshang_qr.jpg"}

处理不确定层级的json

如果json串没有固定的格式导致不好定义与其相对应的结构体时,我们可以使用json.RawMessage原始字节数据保存下来。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
type sendMsg struct {
User string `json:"user"`
Msg string `json:"msg"`
}

func rawMessageDemo() {
jsonStr := `{"sendMsg":{"user":"q1mi","msg":"永远不要高估自己"},"say":"Hello"}`
// 定义一个map,value类型为json.RawMessage,方便后续更灵活地处理
var data map[string]json.RawMessage
if err := json.Unmarshal([]byte(jsonStr), &data); err != nil {
fmt.Printf("json.Unmarshal jsonStr failed, err:%v\n", err)
return
}
var msg sendMsg
if err := json.Unmarshal(data["sendMsg"], &msg); err != nil {
fmt.Printf("json.Unmarshal failed, err:%v\n", err)
return
}
fmt.Printf("msg:%#v\n", msg)
// msg:main.sendMsg{User:"q1mi", Msg:"永远不要高估自己"}
}

转自:https://www.liwenzhou.com/posts/Go/json_tricks_in_go/#autoid-0-0-0